Soliton perturbation theory for the fifth order KdV-type equations with power law nonlinearity

نویسندگان

  • Anjan Biswas
  • Swapan Konar
چکیده

The adiabatic parameter dynamics of solitons, due to fifth order KdV-type equations with power law nonlinearity, is obtained with the aid of soliton perturbation theory. In addition, the small change in the velocity of the soliton, in the presence of perturbation terms, is also determined in this work. c © 2007 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New analytical soliton type solutions for double layers structure model of extended KdV equation

In this present study the double layers structure model of extended Korteweg-de Vries(K-dV) equation will be obtained with the help of the reductive perturbation method, which admits a double layer structure in current plasma model. Then by using of new analytical method we obtain the new exact solitary wave solutions of this equation. Double layer is a structure in plasma and consists of two p...

متن کامل

Application of Variational Iteration Method to the Fifth-Order KdV Equation

Abstract In this paper, we propose an efficient approach to solve the fifthorder KdV equations. By using the variational iteration method, the exact solutions of the fifth-order KdV equations are given without the calculation of the complicated Adomian’s polynomials, linearization, discretization, weak nonlinearity assumptions or perturbation theory. Numerical examples are presented that show t...

متن کامل

Stationary Solitons of the Fifth Order KdV-type Equations and Their Stabilization

Exact stationary soliton solutions of the fifth order KdV type equation ut + αu ux + βu3x + γu5x = 0 are obtained for any p (> 0) in case αβ > 0, Dβ > 0, βγ < 0 (where D is the soliton velocity), and it is shown that these solutions are unstable with respect to small perturbations in case p ≥ 5. Various properties of these solutions are discussed. In particular, it is shown that for any p, thes...

متن کامل

Some traveling wave solutions of soliton family

Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-deVries (KdV), Modied Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial expansion...

متن کامل

Damping of large-amplitude solitary waves

Soliton damping in weakly dissipative media has been studied for several decades, usually using the asymptotic theory of the slowly-varying solitary wave solution of the Korteweg-de Vries (KdV) equation. Damping then occurs according to the energy balance equation, and a shelf is generated behind the soliton. Various examples of this process have been given by Ott & Sudan (1970) Pelinovsky (197...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2007